Marnin Wolfe

Assistant Professor (Quantitative Genetics)

Crop, Soil & Environmental Sciences

(334) 844-4100 



Get In Touch

383 CASIC Building
Auburn Univ, AL 36832



  • Ph.D., Ecology and Evolution, University of Pittsburgh (2013)
  • B.Sc, Biology, Eckerd College (2006)


  • Assistant Professor of Quantitative Genetics, Dept. Crop, Soil and Environmental Sciences, Auburn University (2022-present)
  • Research Associate, Plant Breeding and Genetics, Cornell University (2016-2022)
  • Post-doctoral Associate, Plant Breeding and Genetics, Cornell University (2013-2016)



The Wolfe Lab engages in fundamental and applied research about the inheritance of genetically complex, and multivariate phenotypes in crop species and their associates. Our goal is to help build soils, deliver ecosystem services, support farmers’ profitability and adaptation to climate change in Alabama and the Southeastern US.

We use genomic prediction, genome-wide association mapping and high-throughput phenotyping to determine breeding values and cultivar performance to make selection decisions, often referred to as genomic selection.

We are establishing a cover crop and forage cultivar breeding program at Auburn to deliver cultivars that excel under mixed cultivation conditions. As part of this effort we study the genetics of interactions between species in cropping systems, including intercrops, rotations and species mixtures, to understand performance and productivity under those conditions.

We are also pursuing international research and development efforts focused on intercropping practices, especially for cassava farmers in Africa and Latin America.

We are passionate about achieving sustainability through diversification and conservation tillage practices in cropping system.



  • Chalermpol, P., Aiemnaka, P., Nathaisong, P., Hunsawattanakul, S., Fungfoo, P., Rojanaridpiched, C., Vichukit, V., Kongsil, P., Kittipadakul, P., Wannarat, W., Chunwongse, J., Tongyoo, P., Kijkhunasatian, C., Chotineeranat, S., Piyachomkwan, K., Wolfe, M., Jannink, J-L., Sorrels, M. 2022. Genome Wide Association Mapping and Genomic Prediction of Yield-related Traits and Starch Pasting Properties in Cassava. Theoretical and Applied Genetics. Volume 135, pages 145–171. https://doi.org/10.1007/s00122-021-03956-2
  • Wolfe, M., Chan, A.W., Kulakow, P., Rabbi, I.Y. and J-L. Jannink. 2021. Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices. Genetics, Volume 219 (3), https://doi.org/10.1093/genetics/iyab122
  • Esuma, W., Ozimati, A., Kulakow, P., Gore, M., Wolfe, M., Nuwamanya, E., Egesi, C., and Kawuki, R.. 2021. Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3 Genes|Genomes|Genetics, Volume 11, Issue 9, September 2021, jkab160, https://doi.org/10.1093/g3journal/jkab160
  • Wolfe, M., Kantar, M., Jannink, J-L., N. Santantonio. 2021. Multi-species genomics-enabled selection for improving agroecosystems across space and time. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.665349
  • Rabbi, I.Y., Kayondo, S.J., Bauchet, G., Muyideen, Y., Aghogho, C.I., Ogunpaimo, K., Uwugiaren, R., Ipkan, A.S., Peteti, P., Agbona, A., Parkes, E., Ezenwaka, L., Wolfe, M., Jannink, J-L., Egesi, C., Kulakow, P. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology. https://doi.org/10.1007/s11103-020-01038-3.
  • Omar Yonis, B., Pino del Carpio, D., Wolfe, M., Jannink, J.-L., & Rabbi, I. 2020. Improving root characterisation for genomic prediction in cassava. Scientific Reports. https://doi.org/10.1038/s41598-020-64963-9.
  • Iragaba, P., Kawuki, R.S., Bauchet, G., Ramu, P., Tufan, H. A., Earle, E.D., Gore, M.A. and Wolfe, M. 2020. Genomic characterization of Ugandan smallholder farmer-preferred cassava (Manihot esculenta Crantz) varieties. Crop Science. https://doi.org/10.1002/csc2.20152.
  • Ibrahim, M.S., Kulembeka, H., Mtunda, K., Mrema, E.O., Salum, K; Wolfe, M.; Rabbi, I.Y., Egesi, C., Kawuki, R., Ozimati, A., Lozano, R., Jannink, J-L. 2020. Genomic prediction and quantitative trait locus discovery in a cassava training population constructed from multiple breeding stages. Crop Science. https://doi.org/10.1002/csc2.20003
  • Ikeogu, U.N., Akdemir, D., Wolfe, M., Okeke, U.G., Amaefula, C., Jannink, J-L. and Egesi, C.N. 2019. Genetic Correlation, Genome-Wide Association and Genomic Prediction of Portable NIRS Predicted Carotenoids in Cassava Roots. Frontiers in Plant Science. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.01570
  • Wolfe, M. D., Bauchet, G. J., Chan, A. W., Lozano, R., Ramu, P., Egesi, C., Kawuki, R., Kulakow, P., Rabbi, I., Jannink, J.-L. 2019. Historical Introgressions from a Wild Relative of Modern Cassava Improved Important Traits and May Be Under Balancing Selection. Genetics. https://doi.org/10.1534/genetics.119.302757.
  • Kawuki, R.S., Williams E., Ozimati, A., Kayondo, I.S., Nandudu, L., Wolfe, M.D. 2019. Alternative Approaches For Assessing Cassava Brown Streak Root Necrosis To Guide Resistance Breeding And Selection. Frontiers In Plant Science. https://doi.org/10.3389/fpls.2019.01461
  • Ozimati, A., Kawuki, R., Esuma, W., Kayondo, S. I., Pariyo, A., Wolfe, M., & Jannink, J.-L. 2019. Genetic Variation and Trait Correlations in an East African Cassava Breeding Population for Genomic Selection. Crop Science, 59(2), 460. https://doi.org/10.2135/cropsci2018.01.0060
  • Ozimati, A., Kawuki, R., Esuma, W., Kayondo, I. S., Wolfe, M., Lozano, R., … Jannink, J.-L. (2018). Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3: Genes|Genomes|Genetics, 8, g3.200710.2018. https://doi.org/10.1534/g3.118.200710
  • Ismail, K., D.P. del Carpio, R. Lozano, A. Ozimati, M.D. Wolfe, Y. Baguma, V.E. Gracen, O. Samuel, M. Ferguson, R.S. Kawuki, and J. Jean-Luc. 2017. Genome-wide association mapping and genomic prediction unravels CBSD resistance in a Manihot esculenta breeding population. Sci. Rep. 8(1): 1549. https://doi.org/10.1038/s41598-018-19696-1
  • Del Carpio, D.P., R. Lozano, M.D. Wolfe, J-L. Jannink. Genome-Wide Association Studies and Heritability Estimation in the Functional Genomics Era. 2018. In: Population Genomics, pp 351-425. Springer.
  • Wolfe, M.D., D. Pino Del Carpio, O. Alabi, C. Egesi, L.C. Ezenwaka, U.N. Ikeogu, R.S. Kawuki, I.S. Kayondo, P. Kulakow, R. Lozano, I.Y. Rabbi, E. Williams, A.A. Ozimati, and J.-L. Jannink. 2017. Prospects for genomic selection in cassava breeding. Plant Genome, 10(3): 1–19. https://doi.org/10.3835/plantgenome2017.03.0015
  • Hickey, J.M., T. Chiurugwi, I. Mackay, W. Powell and Implementing Genomic Selection in CGIAR Breeding Programs Workshop Participants. 2017. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genet. 49(9): 1297–1303. https://doi.org/10.1038/ng.3920
  • Charvet, C.J., G. Šimić, I. Kostović, V. Knezović, M. Vukšić, M.B. Leko, E. Takahashi, C.C. Sherwood, M.D.
    Wolfe, and B.L. Finlay. 2017. Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proc. R. Soc. B Biol. Sci. 284(1861).
  • Rabbi, I.Y., L.I. Udoh, M.D. Wolfe, E.Y. Parkes, M.A. Gedil, D. Alfred, R. Punna, J. Jean-Luc, and K. Peter. 2017. Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome, 10(3): 1–14. https://doi.org/10.3835/plantgenome2016.09.0094
  • Wolfe, M.D., P. Kulakow, I.Y. Rabbi, and J.-L. Jannink. 2016. Marker-Based Estimates Reveal Significant Non-additive Effects in Clonally Propagated Cassava (Manihot esculenta): Implications for the Prediction of Total Genetic Value and the Selection of Varieties. Genes|Genomes|Genetics, 6(November): 3497-3506. https://doi.org/10.1534/g3.116.033332
  • Wolfe, M.D., I.Y. Rabbi, C. Egesi, M. Hamblin, R. Kawuki, P. Kulakow, R. Lozano, D.P. del Carpio, P. Ramu, and J.-L. Jannink. 2016. Genome-wide association and prediction reveals the genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9(2): 1–13. https://doi.org/10.3835/plantgenome2015.11.0118
  • Wolfe, M.D. & S.J. Tonsor. 2014. Adaptation to spring heat and drought in northeastern Spanish Arabidopsis thaliana. New Phytol., 201, 323–34. https://doi.org/10.1111/nph.12485